面向工程師的微分方程

Differential Equations for Engineers

This is a course is about differential equations, and covers material that all engineers should know. We will learn how to solve first-order equations, and how to solve second-order equations with constant coefficients and also look at some fundamental engineering applications.

香港科技大學

Coursera

數學與統計

簡單(初級)

8 小時

Sponsored\Ad:本課程鏈接由Coursera和Linkshare共同提供
  • 英語
  • 1880

課程概況

This is a course is about differential equations, and covers material that all engineers should know. We will learn how to solve first-order equations, and how to solve second-order equations with constant coefficients and also look at some fundamental engineering applications. We will learn about the Laplace transform and series solution methods. Finally, we will learn about systems of linear differential equations, including the very important normal modes problem, and how to solve a partial differential equation using separation of variables. This solution method requires first learning about Fourier series.

After each video, there are problems to solve and I have tried to choose problems that exemplify the main idea of the lecture. I try to give enough problems for students to solidify their understanding of the material, but not so many that students feel overwhelmed. I do encourage students to attempt the given problems, but if they get stuck, full solutions can be found in the lecture notes for the course.

Lecture notes may be downloaded at
http://www.math.ust.hk/~machas/differential-equations-for-engineers.pdf

課程大綱

周1
完成時間為 6 小時
First-Order Differential Equations
Welcome to the first module! We begin by introducing differential equations and classifying them. We then explain the Euler method for numerically solving a first-order ode. Next, we explain the analytical solution methods for separable and linear first-order odes. An explanation of the theory is followed by illustrative solutions of some simple odes. Finally, we present three real-world examples of first-order odes and their solution: compound interest, terminal velocity of a falling mass, and the resistor-capacitor electrical circuit.
12 個視頻 (總計 97 分鐘), 11 個閱讀材料, 6 個測驗

周2
完成時間為 8 小時
Second-Order Differential Equations
We begin by generalising the Euler numerical method to a second-order equation. We then develop two theoretical concepts used for linear equations: the principle of superposition, and the Wronskian. Armed with these concepts, we can find analytical solutions to a homogeneous second-order ode with constant coefficients. We make use of an exponential ansatz, and convert the ode to a second-order polynomial equation called the characteristic equation of the ode. The characteristic equation may have real or complex roots and we discuss the solutions for these different cases. We then consider the inhomogeneous ode, and the phenomena of resonance, where the forcing frequency is equal to the natural frequency of the oscillator. Finally, some interesting and important applications are discussed.
22 個視頻 (總計 218 分鐘), 20 個閱讀材料, 3 個測驗

周3
完成時間為 6 小時
The Laplace Transform and Series Solution Methods
We present two new analytical solution methods for solving linear odes. The first is the Laplace transform method, which is used to solve the constant-coefficient ode with a discontinuous or impulsive inhomogeneous term. The Laplace transform is a good vehicle in general for introducing sophisticated integral transform techniques within an easily understandable context. We also introduce the solution of a linear ode by series solution. Although we do not go deeply here, an introduction to this technique may be useful to students that encounter it again in more advanced courses.
11 個視頻 (總計 123 分鐘), 10 個閱讀材料, 4 個測驗

周4
完成時間為 8 小時
Systems of Differential Equations and Partial Differential Equations
We solve a coupled system of homogeneous linear first-order differential equations with constant coefficients. This system of odes can be written in matrix form, and we explain how to convert these equations into a standard matrix algebra eigenvalue problem. We then discuss the important application of coupled harmonic oscillators and the calculation of normal modes. The normal modes are those motions for which the individual masses that make up the system oscillate with the same frequency. Next, to prepare for a discussion of partial differential equations, we define the Fourier series of a function. Then we derive the well-known one-dimensional diffusion equation, which is a partial differential equation for the time-evolution of the concentration of a dye over one spatial dimension. We proceed to solve this equation for a dye diffusing length-wise within a finite pipe.
19 個視頻 (總計 177 分鐘), 17 個閱讀材料, 6 個測驗

Magoosh
聲明:MOOC中國發布之課程均源自下列機構,版權均歸他們所有。本站僅作報道收錄并尊重其著作權益,感謝他們對MOOC事業做出的貢獻!(排名不分先后)
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 網易云課堂
  • 中國大學MOOC
  • 學堂在線
  • 頂你學堂
  • 華文慕課
  • 好大學在線CnMooc
  • 以及更多...
本平臺部分課程由Coursera、Udemy及其推廣聯盟服務商Linkshare共同提供,本平臺合法享有相應的推廣收益。

© 2008-2018 MOOC.CN 慕課改變你,你改變世界

91街机捕鱼网站 重庆时时最新开奖结果 时时彩怎么才能稳赚 重庆时时开奖软件 秒速时时软件 麻将多少张牌 时时彩后一平刷技巧方法 江西时时不兑奖 欢乐生肖游戏怎么玩 为什么玩时时彩很少赢 新疆时时开奖结果一